Pseudorandom number generators use mathematical algorithms to produce a sequence of numbers with good statistical properties, but the numbers produced are not genuinely random.

The C Standard rand() function makes no guarantees as to the quality of the random sequence produced. The numbers generated by some implementations of rand() have a comparatively short cycle and the numbers can be predictable. Applications that have strong pseudorandom number requirements must use a generator that is known to be sufficient for their needs.

Noncompliant Code Example

The following noncompliant code generates an ID with a numeric part produced by calling the rand() function. The IDs produced are predictable and have limited randomness.

#include <stdio.h>
#include <stdlib.h>
 
enum { len = 12 };
 
void func(void) {
  /*
   * id will hold the ID, starting with the characters
   *  "ID" followed by a random integer.
   */
  char id[len];  
  int r;
  int num;
  /* ... */
  r = rand();  /* Generate a random integer */
  num = snprintf(id, len, "ID%-d", r);  /* Generate the ID */
  /* ... */
}

Compliant Solution (POSIX)

This compliant solution replaces the rand() function with the POSIX random() function:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

enum { len = 12 }; 

void func(void) {
  /*
   * id will hold the ID, starting with the characters
   *  "ID" followed by a random integer.
   */
  char id[len];  
  int r;
  int num;
  /* ... */
  struct timespec ts;
  if (timespec_get(&ts, TIME_UTC) == 0) {
    /* Handle error */
  }
  srandom(ts.tv_nsec ^ ts.tv_sec);  /* Seed the PRNG */
  /* ... */
  r = random();  /* Generate a random integer */
  num = snprintf(id, len, "ID%-d", r);  /* Generate the ID */
  /* ... */
}

The POSIX random() function is a better pseudorandom number generator. Although on some platforms the low dozen bits generated by rand() go through a cyclic pattern, all the bits generated by random() are usable. The rand48 family of functions provides another alternative for pseudorandom numbers.

Although not specified by POSIX, arc4random() is another possibility for systems that support it. The arc4random(3) manual page [OpenBSD] states

... provides higher quality of data than those described in rand(3), random(3), and drand48(3).

To achieve the best random numbers possible, an implementation-specific function must be used. When unpredictability is crucial and speed is not an issue, as in the creation of strong cryptographic keys, use a true entropy source, such as /dev/random, or a hardware device capable of generating random numbers. The /dev/random device can block for a long time if there are not enough events going on to generate sufficient entropy.

Compliant Solution (Windows)

On Windows platforms, the BCryptGenRandom() function can be used to generate cryptographically strong random numbers. The Microsoft Developer Network BCryptGenRandom() reference [MSDN] states:

The default random number provider implements an algorithm for generating random numbers that complies with the NIST SP800-90 standard, specifically the CTR_DRBG portion of that standard.

#include <Windows.h>
#include <bcrypt.h>
#include <stdio.h>

#pragma comment(lib, "Bcrypt")

void func(void) {
  BCRYPT_ALG_HANDLE Prov;
  int Buffer;
  if (!BCRYPT_SUCCESS(
          BCryptOpenAlgorithmProvider(&Prov, BCRYPT_RNG_ALGORITHM,
                                      NULL, 0))) {
    /* handle error */
  }
  if (!BCRYPT_SUCCESS(BCryptGenRandom(Prov, (PUCHAR) (&Buffer),
                                      sizeof(Buffer), 0))) {
    /* handle error */
  }
  printf("Random number: %d\n", Buffer);
  BCryptCloseAlgorithmProvider(Prov, 0);
}

Risk Assessment

The use of the rand() function can result in predictable random numbers.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

MSC30-C

Medium

Unlikely

Low

P6

L2

Automated Detection

Tool

Version

Checker

Description

Astrée
stdlib-use-randFully checked
Axivion Bauhaus Suite

CertC-MSC30
Clang
cert-msc30-cChecked by clang-tidy
CodeSonar
BADFUNC.RANDOM.RANDUse of rand
Compass/ROSE




Coverity

DONTCALL

Implemented - weak support

ECLAIR

CC2.MSC30

Fully implemented

Helix QAC

C5022

C++5029


Klocwork

CERT.MSC.STD_RAND_CALL


LDRA tool suite
44 SEnhanced enforcement
Parasoft C/C++test

CERT_C-MSC30-a

Do not use the rand() function for generating pseudorandom numbers
PC-lint Plus

586

Fully supported

Polyspace Bug Finder

CERT C: Rule MSC30-CChecks for vulnerable pseudo-random number generator (rule fully covered)


RuleChecker

stdlib-use-randFully checked

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Key here (explains table format and definitions)

Taxonomy

Taxonomy item

Relationship

CERT CMSC50-CPP. Do not use std::rand() for generating pseudorandom numbersPrior to 2018-01-12: CERT: Unspecified Relationship
CERT Oracle Secure Coding Standard for JavaMSC02-J. Generate strong random numbersPrior to 2018-01-12: CERT: Unspecified Relationship
CWE 2.11CWE-327, Use of a Broken or Risky Cryptographic Algorithm2017-05-16: CERT: Rule subset of CWE
CWE 2.11CWE-330, Use of Insufficiently Random Values2017-06-28: CERT: Rule subset of CWE
CWE 2.11CWE-338, Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)2017-06-28: CERT: Rule subset of CWE
CWE 2.11CWE-6762017-05-18: CERT: Rule subset of CWE

CERT-CWE Mapping Notes

Key here for mapping notes

CWE-327 and MSC30-C









CWE-338 and MSC30-C

CWE-338 = Union( MSC30-C, list) where list =



CWE-330 and MSC30-C

Independent( MSC30-C, MSC32-C, CON33-C)

CWE-330 = Union( MSC30-C, MSC32-C, CON33-C, list) where list = other improper use or creation of random values. (EG the would qualify)

MSC30-C, MSC32-C and CON33-C are independent, they have no intersections. They each specify distinct errors regarding PRNGs.

CWE-676 and MSC30-C









Bibliography

[MSDN]

"BCryptGenRandom() Function"

[OpenBSD]arc4random()