You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 134 Next »

C library functions that make changes to arrays or objects take at least two arguments: a pointer to the array or object and an integer indicating the number of elements or bytes to be manipulated. For the purposes of this rule, the element count of a pointer is the size of the object to which it points, expressed by the number of elements that are valid to access. Supplying arguments to such a function might cause the function to form a pointer that does not point into or just past the end of the object, resulting in undefined behavior.

Annex J of the C Standard [ISO/IEC 9899:2011] states that it is undefined behavior if the "pointer passed to a library function array parameter does not have a value such that all address computations and object accesses are valid." (See undefined behavior 109.)

In the following code,

int arr[5];
int *p = arr;

unsigned char *p2 = (unsigned char *)arr;
unsigned char *p3 = arr + 2;
void *p4 = arr;

the element count of the pointer p is sizeof(arr) / sizeof(arr[0]), that is, 5. The element count of the pointer p2 is sizeof(arr), that is, 20, on implementations where sizeof(int) == 4. The element count of the pointer p3 is 12 on implementations where sizeof(int) == 4, because p3 points two elements past the start of the array arr.  The element count of p4 is treated as though it were unsigned char * instead of void *, so it is the same as p2.

Pointer + Integer

The following standard library functions take a pointer argument and a size argument, with the constraint that the pointer must point to a valid memory object of at least the number of elements indicated by the size argument.

fgets()fgetws()mbstowcs()1 wcstombs()1
mbrtoc16()2 mbrtoc32()2mbsrtowcs()1wcsrtombs()1
mbtowc()2 mbrtowc()1 mblen()mbrlen()
memchr()wmemchr()memset()wmemset()
strftime()wcsftime()strxfrm()1wcsxfrm()1
strncat()2 wcsncat()2snprintf()vsnprintf()
swprintf()vswprintf()setvbuf()tmpnam_s()
snprintf_s()sprintf_s() vsnprintf_s()vsprintf_s()
gets_s() getenv_s()wctomb_s()mbstowcs_s()3
wcstombs_s()3memcpy_s()3memmove_s()3strncpy_s()3
strncat_s()3strtok_s()2strerror_s()strnlen_s()
asctime_s()ctime_s()snwprintf_s()swprintf_s()
vsnwprintf_s()vswprintf_s()wcsncpy_s()3wmemcpy_s()3
wmemmove_s()3wcsncat_s()3wcstok_s()2wcsnlen_s()
wcrtomb_s()mbsrtowcs_s()3wcsrtombs_s()3memset_s()4

1 Takes two pointers and an integer, but the integer specifies the element count only of the output buffer, not of the input buffer.
2 Takes two pointers and an integer, but the integer specifies the element count only of the input buffer, not of the output buffer.
3 Takes two pointers and two integers; each integer corresponds to the element count of one of the pointers.
4 Takes a pointer and two size-related integers; the first size-related integer parameter specifies the number of bytes available in the buffer; the second size-related integer parameter specifies the number of bytes to write within the buffer.

For calls that take a pointer and an integer size, the given size should not be greater than the element count of the pointer.

 Noncompliant Code Example (Element Count)

In this noncompliant code example, the incorrect element count is used in a call to wmemcpy(). The sizeof operator returns the size expressed in bytes, but wmemcpy() uses an element count based on wchar_t *.

#include <string.h>
#include <wchar.h>
 
static const char str[] = "Hello world";
static const wchar_t w_str[] = L"Hello world";
void func(void) {
  char buffer[32];
  wchar_t w_buffer[32];
  memcpy(buffer, str, sizeof(str)); /* Compliant */
  wmemcpy(w_buffer, w_str, sizeof(w_str)); /* Noncompliant */
}

Compliant Solution (Element Count)

When using functions that operate on pointed-to regions, programmers must always express the integer size in terms of the element count expected by the function. For example, memcpy() expects the element count expressed in terms of void *, but wmemcpy() expects the element count expressed in terms of wchar_t *.  Instead of the sizeof operator, functions that return the number of elements in the string are called, which matches the expected element count for the copy functions. In the case of this compliant solution, where the argument is an array A of type T, the expression sizeof(A) / sizeof(T), or equivalently sizeof(A) / sizeof(*A), can be used to compute the number of elements in the array.

#include <string.h>
#include <wchar.h>
 
static const char str[] = "Hello world";
static const wchar_t w_str[] = L"Hello world";
void func(void) {
  char buffer[32];
  wchar_t w_buffer[32];
  memcpy(buffer, str, strlen(str) + 1);
  wmemcpy(w_buffer, w_str, wcslen(w_str) + 1);
} 

Noncompliant Code Example (Pointer + Integer)

This noncompliant code example assigns a value greater than the number of bytes of available memory to n, which is then passed to memset():

#include <stdlib.h>
#include <string.h>
 
void f1(size_t nchars) {
  char *p = (char *)malloc(nchars);
  /* ... */
  const size_t n = nchars + 1;
  /* ... */
  memset(p, 0, n);
}

Compliant Solution (Pointer + Integer)

This compliant solution ensures that the value of n is not greater than the number of bytes of the dynamic memory pointed to by the pointer p:

#include <stdlib.h>
#include <string.h>
 
void f1(size_t nchars) {
  char *p = (char *)malloc(nchars);
  /* ...  */
  const size_t n = nchars;
  /* ...  */
  memset(p, 0, n);
}

Noncompliant Code Example (Pointer + Integer)

In this noncompliant code example, the element count of the array a is ARR_SIZE elements. Because memset() expects a byte count, the size of the array is scaled incorrectly by sizeof(int) instead of sizeof(long), which can form an invalid pointer on architectures where sizeof(int) != sizeof(long).

#include <string.h>
 
void f2(void) {
  const size_t ARR_SIZE = 4;
  long a[ARR_SIZE];
  const size_t n = sizeof(int) * ARR_SIZE;
  void *p = a;

  memset(p, 0, n);
}

Compliant Solution (Pointer + Integer)

In this compliant solution, the element count required by memset() is properly calculated without resorting to scaling:

#include <string.h>
 
void f2(void) {
  const size_t ARR_SIZE = 4;
  long a[ARR_SIZE];
  const size_t n = sizeof(a);
  void *p = a;

  memset(p, 0, n);
}

Two Pointers + One Integer

The following standard library functions take two pointer arguments and a size argument, with the constraint that both pointers must point to valid memory objects of at least the number of elements indicated by the size argument. 

memcpy()wmemcpy()memmove()wmemmove()
strncpy()wcsncpy()memcmp()wmemcmp()
strncmp()wcsncmp()strcpy_s()wcscpy_s()
strcat_s()wcscat_s()  

For calls that take two pointers and an integer size, the given size should not be greater than the element count of either pointer.

Noncompliant Code Example (Two Pointers + One Integer)

In this noncompliant code example, the value of n is incorrectly computed, allowing a read past the end of the object referenced by q:

#include <string.h>

void f4() {
  char p[40];
  const char *q = "Too short";
  size_t n = sizeof(p);
  memcpy(p, q, n);
}

Compliant Solution (Two Pointers + One Integer)

This compliant solution ensures that n is equal to the size of the character array:

#include <string.h>

void f4() {
  char p[40];
  const char *q = "Too short";
  size_t n = sizeof(p) < strlen(q) + 1 ? sizeof(p) : strlen(q) + 1;
  memcpy(p, q, n);
}

One Pointer + Two Integers

The following standard library functions take a pointer argument and two size arguments, with the constraint that the pointer must point to a valid memory object containing at least as many bytes as the product of the two size arguments.

bsearch()bsearch_s()qsort()qsort_s()
fread()fwrite()  

For calls that take a pointer and two integers, one integer represents the number of bytes required for an individual object, and a second integer represents the number of elements in the array. The resulting product of the two integers should not be greater than the element count of the pointer were it expressed as an unsigned char *.  

Noncompliant Code Example (One Pointer + Two Integers)

This noncompliant code example allocates a variable number of objects of type struct obj. The function checks that num_objs is small enough to prevent wrapping, in compliance with INT30-C. Ensure that unsigned integer operations do not wrap. The size of struct obj is assumed to be 16 bytes to account for padding to achieve the assumed alignment of long long. However, the padding typically depends on the target architecture, so this object size may be incorrect, resulting in an incorrect element count.

#include <stdint.h>
#include <stdio.h>
 
struct obj {
  char c;
  long long i;
};
 
void func(FILE *f, struct obj *objs, size_t num_objs) {
  const size_t obj_size = 16;
  if (num_objs > (SIZE_MAX / obj_size) ||
      num_objs != fwrite(objs, obj_size, num_objs, f)) {
    /* Handle error */
  }
}

Compliant Solution (One Pointer + Two Integers)

This compliant solution uses the sizeof operator to correctly provide the object size and num_objs to provide the element count:

#include <stdint.h>
#include <stdio.h>
 
struct obj {
  char c;
  long long i;
};
 
void func(FILE *f, struct obj *objs, size_t num_objs) {
  const size_t obj_size = sizeof *objs;
  if (num_objs > (SIZE_MAX / obj_size) ||
      num_objs != fwrite(objs, obj_size, num_objs, f)) {
    /* Handle error */
  }
}

Noncompliant Code Example (One Pointer + Two Integers)

In this noncompliant code example, the function f() calls fread() to read nitems of type wchar_t, each size bytes in size, into an array of BUFFER_SIZE elements, wbuf. However, the expression used to compute the value of nitems fails to account for the fact that, unlike the size of char, the size of wchar_t may be greater than 1. Consequently, fread() could attempt to form pointers past the end of wbuf and use them to assign values to nonexistent elements of the array. Such an attempt is undefined behavior. (See undefined behavior 109.)  A likely consequence of this undefined behavior is a buffer overflow. For a discussion of this programming error in the Common Weakness Enumeration database, see CWE-121, "Stack-based Buffer Overflow," and CWE-805, "Buffer Access with Incorrect Length Value."

#include <stddef.h>
#include <stdio.h>

void f(FILE *file) {
  enum { BUFFER_SIZE = 1024 };
  wchar_t wbuf[BUFFER_SIZE];

  const size_t size = sizeof(*wbuf);
  const size_t nitems = sizeof(wbuf);

  size_t nread = fread(wbuf, size, nitems, file);
  /* ... */
}

Compliant Solution (One Pointer + Two Integers)

This compliant solution correctly computes the maximum number of items for fread() to read from the file:

#include <stddef.h>
#include <stdio.h>
 
void f(FILE *file) {
  enum { BUFFER_SIZE = 1024 };
  wchar_t wbuf[BUFFER_SIZE];

  const size_t size = sizeof(*wbuf);
  const size_t nitems = sizeof(wbuf) / size;

  size_t nread = fread(wbuf, size, nitems, file);
  /* ... */
}

Noncompliant Code Example (Heartbleed)

CERT vulnerability 720951 describes a vulnerability in OpenSSL versions 1.0.1 through 1.0.1f, popularly known as "Heartbleed." This vulnerability allows an attacker to steal information that under normal conditions would be protected by Secure Socket Layer/Transport Layer Security (SSL/TLS) encryption.

Despite the seriousness of the vulnerability, Heartbleed is the result of a common programming error and an apparent lack of awareness of secure coding principles. Following is the vulnerable code:

int dtls1_process_heartbeat(SSL *s) {         
  unsigned char *p = &s->s3->rrec.data[0], *pl;
  unsigned short hbtype;
  unsigned int payload;
  unsigned int padding = 16; /* Use minimum padding */
 
  /* Read type and payload length first */
  hbtype = *p++;
  n2s(p, payload);
  pl = p;
 
  /* ... More code ... */
 
  if (hbtype == TLS1_HB_REQUEST) {
    unsigned char *buffer, *bp;
    int r;
 
    /* 
     * Allocate memory for the response; size is 1 byte
     * message type, plus 2 bytes payload length, plus
     * payload, plus padding.
     */
    buffer = OPENSSL_malloc(1 + 2 + payload + padding);
    bp = buffer;
 
    /* Enter response type, length, and copy payload */
    *bp++ = TLS1_HB_RESPONSE;
    s2n(payload, bp);
    memcpy(bp, pl, payload);
 
    /* ... More code ... */
  }
  /* ... More code ... */
}

 

This code processes a "heartbeat" packet from a client. As specified in RFC 6520, when the program receives a heartbeat packet, it must echo the packet's data back to the client. In addition to the data, the packet contains a length field that conventionally indicates the number of bytes in the packet data, but there is nothing to prevent a malicious packet from lying about its data length.

The p pointer, along with payload and p1, contains data from a packet. The code allocates a buffer sufficient to contain payload bytes, with some overhead, then copies payload bytes starting at p1 into this buffer and sends it to the client. Notably absent from this code are any checks that the payload integer variable extracted from the heartbeat packet corresponds to the size of the packet data. Because the client can specify an arbitrary value of payload, an attacker can cause the server to read and return the contents of memory beyond the end of the packet data, which violates INT04-C. Enforce limits on integer values originating from tainted sources. The resulting call to memcpy() can then copy the contents of memory past the end of the packet data and the packet itself, potentially exposing sensitive data to the attacker. This call to memcpy() violates ARR38-C. Guarantee that library functions do not form invalid pointers. A version of ARR38-C also appears in ISO/IEC TS 17961:2013, "Forming invalid pointers by library functions [libptr]." This rule would require a conforming analyzer to diagnose the Heartbleed vulnerability.

 

Compliant Solution (Heartbleed)

OpenSSL version 1.0.1g contains the following patch, which guarantees that payload is within a valid range. The range is limited by the size of the input record.

int dtls1_process_heartbeat(SSL *s) {         
  unsigned char *p = &s->s3->rrec.data[0], *pl;
  unsigned short hbtype;
  unsigned int payload;
  unsigned int padding = 16; /* Use minimum padding */
 
  /* ... More code ... */
 
  /* Read type and payload length first */
  if (1 + 2 + 16 > s->s3->rrec.length)
    return 0; /* Silently discard */
  hbtype = *p++;
  n2s(p, payload);
  if (1 + 2 + payload + 16 > s->s3->rrec.length)
    return 0; /* Silently discard per RFC 6520 */
  pl = p;
 
  /* ... More code ... */
 
  if (hbtype == TLS1_HB_REQUEST) {
    unsigned char *buffer, *bp;
    int r;
 
    /* 
     * Allocate memory for the response; size is 1 byte
     * message type, plus 2 bytes payload length, plus
     * payload, plus padding.
     */
    buffer = OPENSSL_malloc(1 + 2 + payload + padding);
    bp = buffer;
    /* Enter response type, length, and copy payload */
    *bp++ = TLS1_HB_RESPONSE;
    s2n(payload, bp);
    memcpy(bp, pl, payload);
    /* ... More code ... */
  }
  /* ... More code ... */
}

Risk Assessment

Depending on the library function called, an attacker may be able to use a heap or stack overflow vulnerability to run arbitrary code.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

ARR38-C

High

Likely

Medium

P18

L1

Automated Detection

Tool

Version

Checker

Description

 
CodeSonar8.1p0

LANG.MEM.BO
LANG.MEM.BU
BADFUNC.BO.*

Buffer overrun
Buffer underrun
A collection of warning classes that report uses of library functions prone to internal buffer overflows

 

Compass/ROSE

 

 

 

 
Coverity6.5BUFFER_SIZEFully implemented 

Fortify SCA

5.0

 

Can detect violations of this rule with CERT C Rule Pack

 

Klocwork

2024.1

ABR

 

 
LDRA tool suite9.7.164 X, 66 X, 68 X, 69 X, 70 X, 71 X, 79 X
Partially Implmented 
Parasoft C/C++test9.5BD-PB-OVERF{RD,WR,FMT,NZT}Fully implemented 
Parasoft Insure++  Runtime analysis 
Polyspace Bug FinderR2016a

Array access out of bounds, Buffer overflow from incorrect string format specifier, Destination buffer overflow in string manipulation, Destination buffer underflow in string manipulation, Invalid use of standard library memory routine
Invalid use of standard library string routine, Mismatch between data length and size, Pointer access out of bounds
Possible misuse of sizeof, Use of tainted pointer

Guarantee that library functions do not form invalid pointers 
PRQA QA-C
Unable to render {include} The included page could not be found.

2845, 2846, 2847, 2848, 2849, 2930, 2932, 2933, 2934

Fully implemented 

Splint

3.1.1

 

 

 

Related Vulnerabilities

CVE-2016-2208 results from a violation of this rule. The attacker can supply a value used to determine how much data is copied into a buffer via memcpy(), resulting in a buffer overlow of attacker-controlled data.

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

C Secure Coding StandardAPI00-C. Functions should validate their parameters
ARR01-C. Do not apply the sizeof operator to a pointer when taking the size of an array
INT30-C. Ensure that unsigned integer operations do not wrap
ISO/IEC TS 17961:2013Forming invalid pointers by library functions [libptr]
ISO/IEC TR 24772:2013

Buffer Boundary Violation (Buffer Overflow) [HCB]
Unchecked Array Copying [XYW]

MITRE CWE

 

CWE-119, Improper Restriction of Operations within the Bounds of a Memory Buffer
CWE-121, Stack-based Buffer Overflow
CWE-123, Write-what-where Condition
CWE-125, Out-of-bounds Read
CWE-805, Buffer Access with Incorrect Length Value 

Bibliography

 


 

  • No labels