You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 5 Next »

Generic code is free to be used with raw types, preserving the compatibility of non-generic legacy code and newer generic code. However, using raw types with generic code will cause the java compiler to issue "unchecked" warnings. When generic and non-generic code are used correctly together these warnings are no threat, but the same warnings are issued when unsafe operations are performed. If generic and non-generic code must be used together these warnings should not be simply ignored.

Noncompliant Code Example

This code ordinarily produces an unchecked warning because the raw type of the List.add method is being used instead of the parameterized type. To make this compile cleanly, the SuppressWarnings annotation is used.

import java.util.*;

public class Test {
  @SuppressWarnings("unchecked")
  public static void addToList(List list, Object obj) {
    list.add(obj);     // "unchecked" warning
  }
  public static void print() {
    List<String> list = new ArrayList<String> ();
    addToList(list, 1);
    System.out.println(list.get(0));
  }
  public static void main(String[] args) {
    Test.print();
  }
}

When run this code will produce an exception because list.get(0) is not of the proper type.

Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String
	at Test.print(Test.java:11)
	at Test.main(Test.java:14)

Noncompliant Code Example

This code reveals the same sort of problem, but it will both compile and run cleanly.

import java.util.*;

public class Test {
  @SuppressWarnings("unchecked")
  public static void addToList(List list, Object obj) {
    list.add(obj);     // "unchecked" warning
  }
  public static <T> void printOne(T type) {
    if (!(type instanceof Integer || type instanceof Double))
      System.out.println("Cannot print in the supplied type");
    List<T> list = new ArrayList<T> ();
    addToList(list, 1);
    System.out.println(list.get(0));
  }
  public static void main(String[] args) {
    double d = 1;
    int i = 1;
    System.out.println(d);
    Test.printOne(d);
    System.out.println(i);
    Test.printOne(i);
  }
}

The method printOne is inteded to print the value one either as an int or as a double depending on the type of the variable type. However, despite list being correctly parameterized, this method will always print '1' and never '1.0' because the int value 1 is always added to list without being type checked.

The code will produce this output

1.0
1
1
1

Compliant Solution

If possible, the addToList method should be generified to eliminate possible type violations.

import java.util.*;

public class Test {
  public static void addToList(List<Integer> list, Integer obj) {
    list.add(obj);
  }
  public static void addToList(List<Double> list, Double obj) {
    list.add(obj);
  }
  public static <T> void printOne(T type) {
    if (type instanceof Integer) {
      List<Integer> list = new ArrayList<Integer> ();
      addToList(list, 1);
      System.out.println(list.get(0));
    }
    else if (type instanceof Double) {
      List<Double> list = new ArrayList<Double> ();

      // This will not compile if addToList(list, 1) is used
      addToList(list, 1.0);

      System.out.println(list.get(0));
    }
    else {
      System.out.println("Cannot print in the supplied type");
    }
  }
  public static void main(String[] args) {
    double d = 1;
    int i = 1;
    System.out.println(d);
    Test.printOne(d);
    System.out.println(i);
    Test.printOne(i);
  }
}

This code will compile cleanly and run as expected by printing

1.0
1.0
1
1

If addToList is externally defined and cannot be changed, the same compliant method printOne can be used as written above, but there will be no warnings if addToList(1) is used instead of addToList(1.0). Great care must be taken to ensure type safety when generics are mixed with non-generic code.

Risk Assessment

Mixing generic and non-generic code may produce unexpected results or program termination.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

MSC10-J

medium

unlikely

high

P2

L3

Automated Detection

TODO

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[[Langer 08]] Topic 3, "Coping with Legacy"

  • No labels